PHYSICAL REVIEW B

VOLUME 3, NUMBER 9 1 MAY 1971

Rigorous and Spin-Wave-Type Results for the Lattice of Plane Rotors*

J. D. PattersonJr and G. L. Jones
Department of Physics, University of Notre Dame, Notve Dame, Indiana 46556
(Received 27 October 1970)

The lattice of plane rotors which we have considered consists of two-dimensional spins ona
two-dimensional lattice. While it is an intrinsically classical system, it shows many of the
features of models which more realistically describe magnetic systems coupled in two-dimen-
sional arrays. We start with the static properties and show how to derive generalizations of
the theorems of Mermin and Wagner, and Jasnow and Fisher. The latter theorems require
that the spontaneous magnetization vanish for two-dimensional Heisenberg systems. We con-
sider more general interactions between spins than that implied by the Heisenberg model. We
also note that higher moments of the magnetization must vanish as well. We derive explicit
upper bounds on the mean-square magnetization when anisotropy is present. As an aid to visu-
alization, we propose a dynamics for the lattice of plane rotors. We construct the dynamics
in such a way as to leave the static statistical properties unaffected. A spin-wave-like approxi-
mation in this dynamics reduces the problem to a typical small-oscillations problem. We show
(both rigorously and in the spin-wave-like approximation) that the qualitative effects of anisot-

ropies and fields in a preferred direction are the same for certain properties.

1. INTRODUCTION

The properties of two-dimensional magnetic sys-
tems have been the subject of several experimen-
tal? as well as theoretical papers.®=® Two-dimen-
sional Ising systems (without an external magnetic
field) are well understood’ and will not be discussed
here. Most of the crystals whose magnetic proper-
ties are described by planar couplings of spins
seem to be Heisenberg-like, We will therefore
concentrate on Heisenberg systems. Isotropically
coupled systems appear to be the simplest to ana-
lyze. However, we discuss some of the effects of
‘anisotropy, because this will be present in any
real crystal. The two-dimensional magnetic be-
havior of actual crystals manifests itself most
clearly at low temperatures. The only widely used
technique for calculating the properties of magnetic
systems at low temperatures is the method of spin
waves (or an equivalent approximation). Due to
the fact that the magnetization vanishes for two-
dimensional (2D) isotropic Heisenberg systems our
approachto spin-wave theory, which is based on the
existence of an ordered ground state, is not con-
sistent for this situation.® However, for sufficiently
large external fields and/or suitable anisotropies,
our method of discussing spin waves is a good
method even in two dimensions. Thus, we find it
useful to include a discussion of a spin-wave-like
approximation in two dimensions.

Our aim is to discuss some of the features of
two-dimensional magnetic systems in as simple a
fashion as possible, and we have chosen the lattice
of plane rotors® as the simplest system. In this
model the spins are considered to be two dimen-
sional, and so they must be treated classically.
Fortunately, the behavior of classically interacting
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spins still appears to show most of the properties
of actual magnetic systems!? although the precise
temperature depéndences of quantities of interest
may be different for the classical case than the
quantum case. With a Heisenberg-type coupling
between spins (and no kinetic energy terms) we can
discuss the static magnetic properties. We can

(in the same model) make a spin-wave-like approxi-
mation and calculate the static magnetic properties
at low temperatures. With no kinetic energy terms,
however, our system has no inherent dynamics,

and it is not possible to picture in a dynamical
fashion what we mean by a spin-wave-like approxi-
mation (for two-dimensional spins one cannot have
true spin waves because precession is impossible).
This is rather unsatisfying, but fortunately we are
free to enlarge our model in such a way that the
new model has a dynamics and also has the same
static magnetic properties as the old model. In
our new model, we can picture spin-wave-like
properties as well as calculate them. The new
model shows how the spin-wave-like approximation
can be regarded as equivalent to the small-oscilla-
tion theory of classical mechanics. Finally, we
should mention that the isotropic lattice of plane
rotors with purely Heisenberg coupling is also
sometimes called the Vaks-Larkin'! model, and

for a three-dimensional lattice it has been sug-
gested as a model to describe the superfluid transi-
tion in a Bose fluid.

II. LATTICE OF CLASSICAL PLANE ROTORS

We assume a square array of spins all with length
I§,l =S, lying in the x-y plane. We assume the
spin located at R; is inclined at an angle 6; with the
horizontal x axis. With an external field B (in
suitable units) along the x axis, we assume the
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coupling between all N spins can be described by
the following Hamiltonian:

N - -
H:-{Z {flJ(R;-R)S;.5,]
yJ=1

N
+a(R£'RJ)siijx}‘BZ ng . (1)
i=1
The J (R, ) often called the exchange integrals,

measure the strength of coupling between the pairs
of spins 7 and j. The anisotropy term is deter-
mined by a (R; -~ R,). We assume both J and a are
of finite range, that J(0)=a(0)=0, and that f(0)=
We assume only ferromagnetic interactions so that
J 20. We also assume f satisfies f' (x +€) 2f’ (x)
and 1" (x+€)= f'' (x) for €>0. For example,
f(x)=x +x% would satisfy all our requirements and
include the physically interesting case of the
Heisenberg Hamiltonian modified by a biquadratic
interaction. If f(x)=x and a=0, then our model
describes an isotropic Heisenberg system placed
in an external field.

Using the angles 60;, we can also write our model
Hamiltonian as

H= —‘}:’_“:l {7[$*J (R, - R,) cos (6, - 6,)]

N
+a (R, - R,)S?cos 6;cos 6,}~B 2. Scos 6;. (2)
i=1
In this notation, the magnetization can be written

XS
m,:éﬁcos 6, . (3)
Note that the Zeeman energy in (2) can also be
written - NBm,. We will assume periodic boundary
so that all quantities such as m, and H repeat them-
selves outside the basic crystal.

When we take thermodynamic measurements, we
do not actually measure m, and H but rather their
statistical average, (m,) and (H). We can calcu-
late these averages by the standard techniques of
statistical mechanics. For a canonical ensemble
and for systems of interest to us, we know for
arbitrary f=f(6y+- 6y):

(fy=[ e 76y 6y) ar/[ e*"ar (4)
where dT=]I{., d6;, B=1/(k5z T), T is the tempera-
ture in K, and k5 is Boltzmann’s gas constant,

III. RIGOROUS THEOREMS

We follow several authors'?~!* in using Schwarz
inequalities to derive rigorous inequalities. The
Schwarz inequalities depend only on very general
properties of vector spaces and one can show that

(A*A)(B*B)2[(A*B) |2 (5)

for the inner product (A*A) defined in such a way
as to give the statistical average of A*A.
The main topic of this section is to use Eq. (5)
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to produce upper bounds for (mZ%). Some prelimi-
nary details are necessary, however. Let

Ap=2) e TR gsme, (6)
i=1 N
and
N
D) QiR ay( 8 e G) 7
. 80, ’

where G is real (its form will be chosen later).
The k vectors are the usual wave vectors defined
in reciprocal space and they range over the first
Brillouin zone (BZ).

An upper bound for $z(Af Ag) is readily obtained:

ZE(BZ) <AEAE> = (Sa/N)E{ <Sin2 9{>ész . (8)
By a partial integration on 6;, we can show that
(AfB;g) =-(Gm,) . 9)

Finally, we can obtain a useful upper bound on
(Bf By).
By two partial integrations we find

2
R {k.(ﬁi_ﬁy) 3G 8G Ga 9“H 10
(Bi B >izjzle <ae ae,*ﬁ 86,00, , (10)

where the Hamiltonian is defined by Eq. (2). By
substituting the expression for

*H
96,06,
and by defining

Q=2,R} |7 (ST (R )| &)

+HF(SPT RSP T®)F ,  (11)
Q,=2]a®)| (12)
we can say
N
Bf B 5_-2 <ZeG Zoc> +NBS? Q(G?) B?

+NB S|B| (G2 +4NB $*(,)(G*) , (13)

where in deriving this inequality use has been
made of the assumptions that ' and f’’ are non-
decreasing.

Combining Eqs. (5), (8), (9), and (13), we can
write, with G=m,,

2 p ko 27kdk
§ ;N(szo SN Bk s [BI/5+a(00]
x|[m® P, (14)

where 2, >0 but smaller than }|(smallest recipro-
cal-lattice vector)|. In deriving (14), we have used
the fact that for 2D systems and large N,

2;()»1\1(-2—‘;—)2[()& ,
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where p=A/N- constant as N, A- «, and A denotes
area, There are two interesting limits in which
(14) can be evaluated. Consider first the case that
|B| =(2,)=0, and suppose N is large. We find

(m?) < (418*2/p) (1/InN)= 0 as N= . (15)

Equation (15) is consistent with, but more general
(it includes more general sorts of isotropic inter-
actions) than, the quantum-mechanical result stated
by Jasnow and Fisher.’ If one is doing numerical
studies on finite systems, (15) might also be useful
for finite but large N. .

The other interesting limit in which (14) can be
evaluated is when we let N- « right away and as-
sume small anisotropies and fields., We then find

(m?) < (418*Q/p) B/ |In(|B | +4(2,)S)|

-0 as |B| +4S(2,)-0 (16)

This is consistent with the result of Mermin and
Wagner® and Mermin® [who find (m,) <K (|In|B||)™/2,
where K is a constant with no anisotropy and for
purely Heisenberg interactions] since we believe
(m2) =(m,)? in the thermodynamic limit, This does
not imply that x=0. It is even possible for (m2)
—(m,)? to be zero as N— = and for x to diverge

in the same limit. This would happen if, for ex-
ample, (m?2) - (m,)%oc(InN)"!, Mermin obtains the
classical result, whereas Mermin and Wagner’s
result is derived quantum mechanically.

We could similarly rule out spontaneous magne-
tization for one-dimensional systems simply by
integrating over one-dimensional 2 space. An
integration over three-dimensional k space yields
the expected result that (m2) is not required to
vanish,

We could also establish (by different choices of
G and induction) that all even moments should van-
ish (with no anisotropy or fields). [A bound on
(m}), for example, can be obtained by letting G
=m? and then doing a calculation similar to the
calculation that was done in deriving Eq. (15). ]

We shall not do this because intuitively we expect
in the thermodynamic limit that, e.g., (mi) =(m2)?
and we have already established that (m2) =0.

We could also show by a somewhat different ar-
gument based on the Schwarz inequalities, that the
transverse susceptibility is infinite for the isotropic
system in the limit of vanishing field. * This is
also intuitive because all it means is that it takes
no energy to rotate a magnetic moment in an iso-
tropic system.

Finally, we should note that these theorems do
not rule out all kinds of phase transitions. In par-
ticular the appearance of infinite magnetic suscep-
tibility without the appearance of spontaneous mag-
netization is a possibility for isotropic 2D Heisen-
berg systems."'s’9
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IV. SPIN-WAVE THEORY

We enlarge our Hamiltonian by adding a kinetic
energy term so that dynamical motion will be pos-
sible. As mentioned, this is not necessary in order
to calculate those properties of interest to us, but
it is convenient for visualization purposes. Wegner®
has obtained similar results to those given below.
Our results are more general in that they include
more general exchange interactions than implied
by the Heisenberg model and also we include anisot-
ropy. Also, Wegner does not introduce a dynamics.
We say (introducing a constant o)

N
HI:; (p3/20)+H (%)
=1
will describe the motion of the system, where H is
defined by Eq. (2) and p;= af. Note that statistical
averages for quantities that are functions of §; (and
not p;) are invariant to adding in the kinetic energy
term. For our model the spin-wave-like approxi-
mation consists in treating 6; as small and retaining
only terms up to second order in 6; in the Hamil-
tonian. If the x direction is the ordering direction,
this is consistent with the typical spin-wave appro-
ximation of assuming S, <8,. '

Our Hamiltonian generates a typical small-oscil-
lation problem and the normal frequencies obtained
are

wi= SZJZ"(O) <2—coskxa—coskya+zgf7(3)(g)—37‘—g> ,
(18)
where
fr0)=2; f1 (ST (R,) I (R;)
and

aF(O):Z,-a (R,)

We now indicate how to calculate the magnetiza-
tion. Consistent with the spin-wave approximation,
we can say

L S 3
(m,) = N (Sy,i) = N (cos 6;)
(19)
i=1

35(1_-2—1]7 i‘(e?)}

The remaining problem is the problem of evaluat-
ing

N
2 (6%
i=1

By using normal coordinates A; in the usual way,
we can readily show that the energy E of the sys-
tem described by the Hamiltonian H' is

=z

- % i (A Af + 0B 3 8f) | (20)

(BZ)

Writing E in terms of A; corresponds to using “run-
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ning waves” as solutions. The Ag are slightly in-
convenient because the Ap and A_; modes are still
coupled in (20). It is possible to make a transfor-
mation to “standing wave” modes described by veal
Cg with the same fr‘équency wg so that E may be ex-
pressed as in (20) but with the Ag replaced by Cg.1®
The problem is now explicitly reduced to a set of
N decoupled harmonic oscillators. We obtain for
the magnetization (since 3V, 2=z 14, 2= CE )
by (19)

_si_ L s Je?"Ch [z dCr)MszdCY)] .
ome) =5 [1- 55 T L e e
(21)
We are only interested in the low-temperature re-
sults, so large amplitudes and velocities should
appear with vanishingly small probability. There-
fore, we can safely extend the upper limits of the
integrals to «», With Ag replaced by C; we insert
(20) into (21), cancel common factors in the nu-
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merator and denominator, evaluate standard in-
tegrals, and replace the sum over the BZ by an
integral. We are only interested in low tempera-
tures and so only large wavelength (small 1kl)
modes should be of importance. Finally, at low
temperatures the shape of the BZ should not be
important so we can use as an upper limit for our
integral %, defined by 72 = (27/a)® where a is the
nearest-neighbor distance. We thus obtain for our
two-dimensional systems:

1p 1
mo=s[1-4 & s
F»(0)a%?
*In <1+ z(ng(0)+B/S)>] ' #2)

Note that if no anisotropies or fields are present
[az(0)=B=0] then (22) diverges and our spin-wave
approximation is inappropriate. This fact was
known before Mermin and Wagner proved the mag-
netization must vanish for this case.
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The effect of correlation on the antiferromagnetic and paramagnetic phases of Hubbard’s
model of a half-filled narrow band are investigated using second-order perturbation theory.
Employing the gap of the antiferromagnetic state as a variational parameter, it is shown that
the increase of the bandwidth/potential-energy ratio leads to a phase transition into the para-
magnetic state nearly where Mott has estimated it to occur. The convergence of the perturba-
tion expansion is shown to be excellent at the transition.

L. INTRODUCTION

In a recent paper' the authors discussed the
mathematical methods they believed necessary for

the treatment of the paramagnetic and antiferro-
magnetic ranges of the Hubbard Hamiltonian® in a
half-filled narrow band. They argued that a ¢-
matrix expansion would be required in the investi-



